Module Synopses
(Academic Year 2016)

<table>
<thead>
<tr>
<th>Subject</th>
<th>H₃ Module Title</th>
<th>Pre-Requisite H₂ Subject</th>
<th>Preclusion(s)</th>
<th>Host Centre(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>Molecular Biology</td>
<td>H2 Biology</td>
<td>MOE H₃ Proteomics</td>
<td>HCI</td>
<td>1</td>
</tr>
<tr>
<td>Physics</td>
<td>Semiconductor Physics & Devices</td>
<td>H2 Physics</td>
<td>MOE H₃ Essentials of Modern Physics</td>
<td>HCI</td>
<td>2</td>
</tr>
<tr>
<td>Summary</td>
<td>NTU H3 Taught Modules – Programme Information</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
MOLECULAR BIOLOGY
Host Centre: Hwa Chong Institution (HCI)

Pre-requisite: H2 Biology
Preclusion: This course cannot be offered together with MOE H3 Proteomics

MOLECULAR BIOLOGY focuses on the areas of Biomolecules and Recombinant DNA Technology.

Biomolecules explores the 3-dimensional structure of biomolecules and offers insights into forces that govern their structure and functions. Students will learn to assess databases and software to analyse and to visualise the 3-D structures of biomolecules.

Recombinant DNA Technology introduces modern biotechnology concepts and methodologies, which includes DNA/protein manipulation and analysis, mass spectroscopy and nuclear magnetic resonance (NMR). Students will also be introduced to biomedical technologies such as stem cell research, as well as the generation of knockout/transgenic animals.

The course will be conducted through lectures, tutorials and laboratory sessions (computer & wet-laboratory).

Assessment will be based on the following components:
- Laboratory assignments – Wet-Laboratory Practical Report (20%)
- One 2½-hour written Final Examination (80%)

Direct any further module-specific enquiries to TalentOutreach@ntu.edu.sg.
SEMICONDUCTOR PHYSICS & DEVICES
Host Centre: Hwa Chong Institution (HCI)

Pre-requisite: H2 Physics
Preclusions: This course cannot be offered together with MOE H3 Essentials of Modern Physics

SEMICONDUCTOR PHYSICS & DEVICES is designed to stimulate students’ interest in science and engineering, and to help them broaden their educational experience. It is intended for students wishing to pursue deeper studies in Physics and Semiconductors.

Students enrolled in the course will learn the key theorems of semiconductors and the operating principles of semiconductor devices. Hands-on sessions on semiconductor materials and devices will be provided. Through this module, students will also acquire an understanding and appreciation of the driving force behind the convergence of semiconductor technologies, which is imperative to our daily life, and its evolution.

The course will be conducted through lectures, tutorials and laboratory sessions.

Assessment will be based on the following components:
- Laboratory Assignments (Report & Viva) (10%)
- Two 1-hour written Mid-Term Tests (20%)
- One 2½-hour written Final Examination (70%)

Direct any further module-specific enquiries to TalentOutreach@ntu.edu.sg.
## Subject	H3 Module Title	Pre-requisite H2 Subject	Host JC	Lesson Schedule	Assessment	Tests & Examination Schedule
Biology | Molecular Biology | H2 Biology | HCI | Lectures / Tutorials
Fridays
4:00 – 7:30pm
Laboratory
Saturdays
16 Jan 2016 to 20 Feb 2016
9:00am – 12.30pm | ▪ Wet-Laboratory Practical Report
▪ Final examination | Report Submission:
Date: 15 April 2016, Fri
Exam: 11 May 2016, Wed |
Physics | Semiconductor Physics & Devices | H2 Physics | HCI | Lectures
Thursdays
4:00-6:30pm
Tutorials
Mondays / Tuesdays
3:00pm – 5:00pm OR
5:00 – 7:00pm
Laboratory
Refer to schedule issued by lecturer | ▪ Laboratory assignments
(report & viva)
▪ Term tests
▪ Final examination | Test 1: 29 Mar 2016, Tue
Test 2: 03 May 2016, Tue
Exam: 26 May 2016, Thu |